Village of Sherman WWTP Improvement Project

Barton&Loguidice

Collen Meeder, Mayor Village of Sherman

Matthew Zarbo, P.E. e&b Squared Engineering D.P.C.

March 5, 2024

- About the Village
- Project Background
- Financial State of Village
- Project Plan of Finance
- Pre-Project WWTP
- WWTP Design and Construction
- Key Takeaways

Agenda

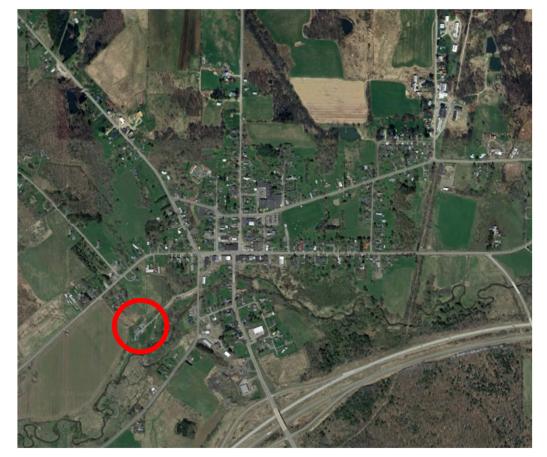
What is there to learn?

- Challenges of Upgrading Infrastructure in a Small Community
- Criticality of a Plan of Finance
- Logic behind Technical Design
- An Engineer might just produce overpriced paper, while a good Consultant completes a project

About Sherman and Background

e&b squared

About the Village


- Small Village in Chautauqua County
- Incorporated in 1890
- Population of ~700
- •~\$40,000 MHI

Major Village Infrastructure

- Sanitary Sewer System
 - WWTP
 - Gravity Collection System
- Drinking Water System
 - Groundwater Wells
 - Treatment Building
 - Distribution System
 - Storage Tank
- Storm Sewer System
- Village Roads

e&b squared

VILLAGE OF SHERMAN WASTEWATER TREATMENT PLANT EST. 1979 Mayor Edward Sprickman 1975 - 1985 & 1993 - 1995

State of Utility Systems (2019)

- Sanitary Sewer System
 - Plant meeting SPDES Permit, but equipment rapidly failing
 - Collection system in decent shape (PVC piping)
 - Engineering study estimated \$6.5 million in upgrades
- Water System
 - DOH violations required addressing
 - Engineering study estimated \$2.4 million in upgrades
- Storm Sewer System
 - Flooding issues throughout Village
 - Engineering study estimated \$3.2 million in upgrades

For Comparison (Sewer Project Only)

Village of Sherman Sewer System

- Services ~700 people
- \$6.5 million / 700 = ~\$9,285/person

Comparing to:

City of Buffalo Sewer System

- Services ~550,000 people (Buffalo and surrounding Towns in system)
- Per person equivalent project cost would be \$5.1 billion

2019 Village Financials

<u>The Positive</u>

- Existing Capital Debt will Soon Expire
- Low Sewer Rates

The Negative

- Sewer budget in Debt
- Sewer rates too Low
- No Reserve Savings
- Previous consultants and Village officials were convinced the project was unaffordable.

e&b squared

Key Note: Analyze your sewer rates before a project. Artificially low rates, will cost you grant funding.

The Plan and Funding

High Level Funding Plan

Steps:

- 1. Get Sewer Rates in Order
- 2. Understand Available Funding
- 3. Discuss Project with Funding Agencies
- 4. Create a Plan of Finance Strategy
- 5. Have Faith in your Plan
- 6. Execute!

Key Note: If you need funding, you need to learn it or work/partner with someone who does.

Developing the Plan of Finance

Major Programs at time of Project

- 1. NYSEFC Managed Programs
 - A. 0% Interest Loan... Unlikely, due to meeting permit/watershed.
 - B. CWSRF Grant ... Unlikely, due to meeting permit/watershed.
 - C. WIIA Grant... Likely, due to project scope and hardship status.
- 2. USDA Rural Development Managed Programs
 - A. WEP Program Loan ... Likely, due to project scope/poverty status.
 - B. WEP Program Grant... Likely, due to project rate impacts.
- 3. NYSHCR Managed Programs
 - A. CDBG Public Infrastructure... Likely, due to Village LMI and project rate impacts.
- 4. NYSDEC Managed Programs
 - A. WQIP ... No chance based on scoring criteria

The Plan of Finance

1. NYSEFC WIIA Grant

- A. To Apply: Complete PER, SEQR, and Bond Resolution
- B. Result: 25% Net Grant, \$871,250

2. USDA Rural Development

- A. To Apply: Complete PER, SEQR/NEPA/Env. Report, and Bond Resolution
- B. Result: Poverty Rate Loan, \$2,265,000 Grant

3. NYSHCR

- A. To Apply: Complete PER, SEQR/NEPA, Bond Resolution, and sometimes Design
- B. Result: \$1,250,000 Grant

Total Grant - \$4,386,250 (~63% of project cost)

Environmental

Facilities Corporation

NEW YORK

STATE OF

NEW YORK STATE OF OPPORTUNITY.	Homes and Community Renewal
--------------------------------------	--------------------------------

Community Development Block Grant

The Village got Creative

When grant wasn't good enough... Think outside the box!

- New sewer plant ideally required additional property
- Purchased farm next door and lease for a solar farm
- ~\$19,000/year toward debt, Discounted Electrical Rates

How it turned out?

- 1. Design and construction went great. Minor issues:
 - 1. COVID material shortages
 - 2. Inflation
 - 3. Funding agencies working together
- 2. Sewer rates remained affordable
- 3. Reserve funds are being stocked
- 4. Asset Management Plan underway
- 5. One happy Operator

Pre-Project WWTP

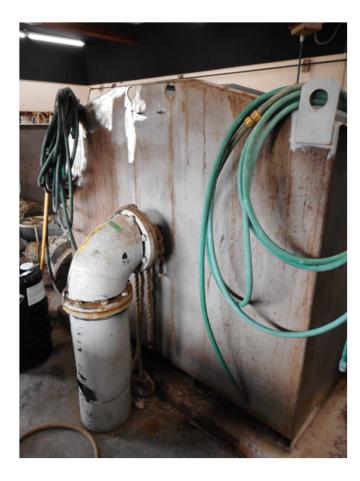
Existing WWTP

- Late 1970's
- Activated Sludge Process
- Extended Aeration / Contact Stabilization
- No redundancy

Influent Pump Station

Replaced internally by Village (with some oversight).

Headworks


Biological Process

Tertiary Filters

Disinfection and Post Aeration

Sludge Handling

Electrical

WWTP Design and Improvements

WWTP Plant Improvements

- New Headworks Facility
- New Sequencing Batch Reactor Biological Process
- New Disc Filters
- UV Disinfection
- Aerobic Digester Upgrades
- Trailer mounted Screw Press
- Upgraded Electrical and Controls

e&b squared

Headworks

Improvements Overview

- Mechanical Bar Screen with washer compactor (Duperon Flexrake)
- Parallel Manual Grit Channels
- New Headworks Room (Class 1 Division 1)

Headworks

- Placed higher than SBR to reduce pumping (involved purchasing property)
- Wanted high quality screen with automatic raking
- Manual Grit Channels Low enough plant flow, save on cost
- Removable compactor chute section for winter operation

Sequencing Batch Reactor

- Continuous flow Sanitaire Sequencing Batch Reactor
- Precast, Post Tensioned Dutchland Tank
- Post SBR Equalization

e&b squared

Sequencing Batch Reactor

- Built offline Ease of construction
- Buried into hill- No stairs, Better for Process
- Operator friendly/familiar and automated process
- More energy efficient aeration
- Good with flow variation
- Tank choice Quality and ease of construction
- Post SBR EQ Reduce downstream equipment sizing

Tertiary Filtration

Improvements Overview

- Kruger Hydrotech Disc Filters
- Required to guarantee permit would be met

Design Decisions

• Fit into existing filter room

Disinfection

Improvements Overview

 Glasco Non-Contact UV to replace chlor-dechlor process

- Cost
- Ballast Weight
- Easily fit into minor building expansion

Post Aeration

Improvements Overview

- New air source (previously used old blowers)
- New small 120V pond aerators located near post air tank

Design Decisions

- Cost
- Air requirements
- Far distance from new blower building

ப்	HIBLOW HP-80 Pond Aerator/ Septic Linear Air		
	Pump		
	Visit the Hiblow Store		
	4.8 ***** ~ 1,	743 ratings	
	Amazon's Choice in Water Garden & Pond Pumps by Hiblow		
	600+ bought in past month		
	-15% ^{\$} 267 ⁹⁵		
	List Price: \$314.65 ()		
	FREE Returns ~		
	Pay \$22.33/month f	or 12 months, interest-free upon approval for Amazon Visa	
	Style: AERATOR		
0	AERATOR \$267.95	AERATOR + Hose, 100 Feet \$401.76	

LIDI OWI LID 00 Dand Agratari Cantia Li

AERATOR + Hose, 50 Feet \$336.32

Aerobic Digestion

Improvements Overview

• Convert one existing "donut" tank into two aerobic digesters

- Cost
- Reuse of existing tankage
- Reuse of existing sludge lines

Sludge Dewatering

Improvements Overview

- Design allowed for continued use of drying beds (if desired)
- New mechanical sludge dewatering screw press trailer

- Difficulty of managing beds
- Cost of building vs trailer
- Mobility and potential for revenue source

Extra Equalization

Improvements Overview

- Last minute add on
- Convert second "donut" tank into an equalization tank

- Minimal Cost
- Weekend Sampling
- Labor Reduction
- Extra storage is always good

Electrical and Controls

Improvements Overview

• New electrical service, motor control center, and all new control panels

- 480V over 208V
- Utilized stock manufacturer provided controls to furthest extent
- Single source of responsibility

Key Takeaways

Key Project Takeaways

- Small communities require Significant Funding
- Get your Sewer Rates in Order
- Obtaining Funding requires Strategy and Program Knowledge
- If you need funding, learn it or partner with someone that knows.
- Free money is slow money. Start planning now!
- Multiple Funding Agencies create project Complexity
- Design to your Client and Budget. Don't create overpriced Paper.
- Operators should be part of your Design Team.

Thank you to Project Partners

Suppliers and Manufacturers

#DUPERON

Matthew Zarbo, P.E e&b Squared Engineering D.P.C 716-208-4534 mzarbo@eandbsquared.com

Thank you!